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Test 2 - Abstract Algebra, |
- Dr. Graham-Squire, Spring 2016 7’%
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I pledge that I have neither given nor received any unauthorized assistance on this exam.

b3

(signature)

DIRECTIONS

Don’t panic.

Show all of your work and use correct notation. A correct answer with insufficient
work or incorrect notation will lose points. '

Cell phones and computers are not allowed on this test. Calculators are allowed, though
it is unlikely that they will be l;eli'pul.

If you are confused about what a particular notation means (e.g. U(n)) or whether or
not something can be assumed (as opposed to needing to prove it}), feel free to ask.

You must to all of the first four questions, but only two of the last three (if you do all
of the last three questions, I will grade them all and give you the two highest scores of
the three).

Make sure you sign the pledge above. .

Number of questions = 6. Total Points = 30.



1. (5 points) Some of the following six groups are isomorphic and others are not isomor-
phic. If a group is not isomorphic to other groups, give a (brief) explanation of why. If
two groups are isomorphie, give a brief explanation of why (full proof is not necessary).
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2. (4 points) Give at least fwo reasons why Z (under addition) is not isomorphic to R
(under multiplication).
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3. (5 points) Let G be the following subgroup of Sg:
G = {(1),(12)(34), (1234)(56), (13)(24), (1432)(56), (56)(13), (14)(23), .(24)(56)}.

Recall that the stobilizer is the set of elements of the permutation group that send a
number to itself, and the orbit is all of the numbers that a particular number can get

sent to.

{a) Find the stabilizer of 1 (in G) and the orbit of 1 (in G).
(b) Find the stabilizer of 5 (in G) and the orbit of 5 (in G).

c) In what Way\s do YO.UI answers above confirm or refute the DI'bit—StEl-bﬂiZ@I‘ theo-
rem?
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4. (4 points) Let G = U(15) @ Zap @ Ss. Find the order of the element

(2,7, (123)(154)) € G.

Explain your reasoning.
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For the next three problems, you will receive the highest 2 scores out of the three, so
you do NOT have to answer all of them.

5. (6 points) Let H be a subgroup of G. Prove that, for a € G,

aH = H if and only if o € H.
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6. (6 points) Prove the following for groups G and H:

If G & H is cyclic, then G and H are both cyclic.
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7. (6 points) Suppose a : G — H is an isomorphism from G to H,and 8: H— Kisan
isomorphism from H to K. Prove that G is isomorphic to K. (Note: you may have to
use certain conclusions we have proved previously in this course (and Math Thought).

/ If you are unsure whether you can state something or need to prove it, ask Dr. G-5).
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8. (2 points) Extra Credit: Recall that Inn(G) denotes the group of inner automorphisms
of G, that is, automorphisms of the form ¢, where g € G and ¢, : G — G is defined
by ¢4(z) = gzg~". Prove that |Inn(G)| =1 if and only if G is Abelian.
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